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Abstract 

In this paper we present a routine that exploits the power of seismic arrays and cepstral 

techniques to estimate the depth of an event directly from the observed seismograms.  A 

discussion of the pertinent geophysical assumptions, cepstral processing algorithm, stable peak 

identification via “cepstrograms,” false alarm reduction methodology, and our array-based depth 

estimation routine is presented.  An analysis of several shallow events is performed and 

compared to results produced by a standard location algorithm, waveform forward modeling, and 

previously published solutions. 
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Automated Source Depth Estimation Using Array Processing Techniques 

 

1.0 Introduction 

Source depth estimation is a key process in the discrimination of earthquakes and explosions.  

The lack of observable depth phases does not necessarily mean the event occurred at or near the 

surface.  Shallow events can have closely spaced depth phases that are indistinguishable even by 

seasoned human analysts.  Moreover, the onset of smaller events observed at regional distances 

is often complicated by the arrival of multiple phases in rapid succession, which makes the 

identification of depth phases even more problematic.  Source parameters for such events can be 

derived using moment tensor inversion or forward modeling techniques, which are difficult to 

apply to events less than mb 5.5 and shallower than 15 km, and depend on the availability and 

accuracy of geophysical models.  These limitations are not practical for real-time discrimination 

of earthquakes and explosions. 

If depth phases with sufficient signal-to-noise ratio (SNR) reside in an observation, they will 

produce a spectral scalloping pattern with a period equal to the time delay between signals.  This 

spectral phenomenon can be detected using cepstral processing, which has been used in a 

number of studies over the last 45 years with limited success [Bogart et al., 1963; Ulrych, 1971; 

Kemerait and Childers, 1972; Ulrych et al., 1972; Tribolet, 1978; Kemerait and Sutton, 1982; 

Marenco and Madisetti, 1997; Shumway et al., 1998; Bonner et al., 2002; and Reiter, 2005].  

These studies, however, did not exploit the power of seismic arrays to determine the ray 

parameter of the arriving phase.  The ray parameter, an assumed wave speed, and simple vector 

decomposition can be used to determine the vertical phase velocity and wavefront angle of 

incidence.  If reciprocity between the source and receiver holds, the angle of incidence and take-

off angle are the same and can be combined with the depth phase delay time to calculate a source 

depth directly from the observed seismograms.  Unlike moment tensor inversion or waveform 

forward modeling, this methodology neither requires detailed geophysical models nor is 

restricted to large events or a minimum depth. 

Our routine employs a multi-stage detection scheme that reduces the high false alarm rate 

inherent to cepstral analysis.  First, a site-specific, adaptive, cepstral amplitude or gamnitude 
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threshold, recalling the terminology coined by Bogart et al., 1963, is derived using pre-signal 

noise to identify statistically significant peaks.  Knowing that cepstra are highly unstable and 

change significantly with minor changes to processing parameters, we developed an iterative 

technique to search for stable detections over a series of increasing time windows.  The resulting 

“cepstrograms” accentuate stable features in the cepstral domain to assist the algorithm in 

selecting only signal-induced peaks.  Finally, a binary stacking module checks for consistent 

detections across the observing network. 

2.0 Theory 

Figure 1a shows the ray path geometry between a shallow source and receiver.  Notice that 

upward traveling rays reflect off the free surface, travel along a path similar to the primary phase, 

and arrive at the receiver with the same angle of incidence and apparent velocity.  This idealized 

illustration depicts the geophysical assumptions our algorithm relies on, which are as follows: 

 Source Mechanism:  Cepstral analysis relies on the assumption that the source 

mechanism can be modeled as a point source.  Large magnitude earthquakes often have 

time varying rupture processes that violate this assumption.  As a result, we limit 

ourselves to analyzing events with bodywave magnitudes less than 6.0. 

 Phase Speed:  Since we are interested in discriminating between earthquakes and 

explosions, we assume a shallow source depth (d < 20 km).  This means that the speed of 

the incident P-wave is approximately 5.8 km/sec for continental crust events [Kennett, 

1991]. 

 Angle of Arrival:  If reciprocity holds, the incidence angle of the primary arrival is equal 

to the take-off angle at the source.  This assumption allows for the derivation of the take-

off angle using horizontal apparent velocity measurements and the previously assumed 

phase speed. 

 

Stephanie.Fisher
Line
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 (a) (b) 

Figure 1.  (a) Propagation paths for primary arrival and associated depth phases traveling through a flat, 

discretized earth.  (b) Ideal ray path geometry for a seismic point source. 

 

2.1 Depth Estimation 

The ray transmission and reflection geometry generated by a seismic point source is shown in Figure 

lb.  The illustration shows depth, d (km), is a function of the delay time between the primary arrival and 

its associated depth-phase,  (sec), the ray take-off angle,  (deg), and the P wave speed, α (km/s) 

 

d = ( * ) 
cos2

1

 (1)

 

The value of  is supplied via cepstral processing (section 2.2.1) and the ray take-off angle is computed 

using the phase velocity's horizontal and vertical components.  The horizontal phase velocity or apparent 

velocity, c (s/km), of a planar wavefront traveling across a seismic array is often measured using 

frequency-wavenumber analysis [Kvaerna, 1989]. The apparent velocity measurement of the incident 

wavefront, and an assumed speed of the P-wave, allows us to calculate the ray's vertical velocity 

component,  (s/km), and take-off angle using 

  (2)

 

 c

1tan

 (3)

 

respectively. 

Stephanie.Fisher
Stamp
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Since the take-off angle and apparent velocity vary as a function of distance, due to varying ray path 

geometries, they are calculated for each station in the network.  Site-specific values for , c, and  are 

computed and substituted into (1) [Junek et al., 2006; Junek et al., 2007].  This results in a suite of depth 

hypothesis that already account for move-out between stations. 

2.2 Signal Processing Algorithm 

Our signal processing algorithm (Figure 2) consists of three main components.  First, a cepstral 

processing component (cyan) determines the time delays between direct P and the reflected phase.  Next, 

a depth estimation component (yellow) combines delay times with phase wavespeeds to compute a depth.  

Finally, a false alarm reduction component (green) identifies statistically significant cepstra and 

consistent depth estimates across the network. 

 

 

Figure 2. Signal processing algorithm consists of a cepstral processing component (cyan), depth 

estimation component (yellow), and a false alarm reduction component (green). 

 

 



Automated Source Depth Estimation 

Using Array Processing Techniques 

 

5 

 

2.2.1 Cepstral Processing 

Our cepstral processing function combines the methodologies of [Kemerait, 1972; Shumway et al., 

1998; and Bonner et al., 2002].  Event observations and pre-signal noise segments from each element of 

an array are passed into the algorithm and processed separately using the same parameters to ensure the 

results are comparable.  Mean signal and pre-signal noise cepstra are created from the individual results to 

enhance common peaks. 

2.2.2 False Alarm Reduction 

The false alarm reduction routine consists of four primary components:  gamnitude threshold 

computation, detection processing, application of a cepstral stability requirement, and a network 

consistency check.  Each of these techniques is used to reduce the high false alarm rate inherent to 

cepstral analysis. 

A gamnitude threshold derived from site-specific, pre-signal noise cepstra is used to select candidate 

peaks for the depth estimation algorithm.  The threshold is defined as the 99
th
 percentile of the gamnitude 

distribution of the pre-signal noise cepstra for a sampling window equal to the time-domain sampling 

window.  This is repeated for each station in the network to derive real-time, site-specific gamnitude 

thresholds that are based on the current noise conditions at each site.  This prevents hourly, daily, or 

seasonal noise fluctuations from increasing the false alarm rate. 

Cepstral processing is performed for each station using a series of increasing sampling window 

lengths to identify stable peaks.  As the sampling window length grows and captures larger sections of the 

depth phase, the intensity of the points in the “cepstrograms” grows, peaks, and fades as more noise is 

acquired.  A stability parameter, , is used to define the number of consecutive threshold crossing cepstra 

that are required to declare candidate depth phase detections.  The value of  is typically set between 15% 

and 25% of the total number of sampling windows.  Results existing for less than this value are not 

considered a candidate depth phase.  Figure 3 shows conceptual cepstrograms for both pre-signal noise 
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and the observed seismogram.  This procedure is repeated for each set of array observations until a 

collection of cepstrograms are generated. 

 

Figure 3. Conceptual cepstrograms for pre-signal noise and observed seismograms, respectively, where 

the Y-axis is delay time, X-axis is the sampling window length, random points in the top and 

bottom panels are transient noise spikes, and lines are stable signals. 

 

Detection processing is carried out on a station-by-station basis.  All threshold crossing cepstra, for 

each station, that meet the stability criteria are treated equally to avoid the possibility of a missed 

detection.  Each candidate depth phase delay time is then passed to the depth estimator (section 2.2.3). 

Network consistency is checked by a binary stacking algorithm and takes place after depth extraction 

to compensate for move-out between stations [Murphy et al., 1999; Bonner et al., 2002].  This 

methodology allows one input per station for each depth cell, whose width is a user defined parameter, n 

[Bonner et al., 2002; Murphy et al. 1999].  The largest peak in the stack identifies the measurement that is 

the most consistent across the network and is declared the final result. 
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2.2.3 Depth Computation 

The depth estimation module requires time domain data for the primary arrival and the time delay of 

each threshold crossing cepstra for each station being considered.  Time domain data is used to compute c 

of the incident wavefront, which is used to compute  and .  These parameters are substituted into 

equation (1) to calculate a suite depth estimates for that seismogram.  This is repeated for each array in 

the network, where the resulting depth profiles are passed to the network consistency routine (section 

2.2.2). 

3.0 Discussion 

Automated depth estimates for a series of events observed at regional and teleseismic distances were 

generated and compared to those derived by a standard location routine, moment tensor inversion and 

waveform forward modeling, and previously published results.  Five randomly selected events are chosen 

for our evaluation.  Filter passbands that maximize the signal-to-noise ratio for each station/event pair 

were selected and a standard set of processing parameters were used to prevent tuning biases in the 

solutions. 

Models for events 1, 2, 4, and 5 were computed using the Moment Tensor Inversion Toolkit 

(MTINV) [Ichinose, 2006] and regional data acquired from IRIS or the Japanese Meteorological Agency 

(JMA).  Simple three-layer crustal models over a half space were used to model these events, where the 

Western United States model was used for events 2 and 5, a model created by [Ichinose, 2008] was used for 

event 4, and a modified version of a model-based one [Ichinose et al., 2005] was used for event 1.  Event 

3 was modeled using reflectivity software employing Kennett's technique of solving wave propagation 

problems in laterally homogenous layers [Randall et al., no date].  A 186-layer Earth model consisting of a 

two-layer crust, similar to one used by [Antolik and Drenger, 2003], and an upper and lower mantle 

model based on PREM was used to compute the synthetics [Randall, 2006]. 

Observed waveforms, network configuration, and automated processing results for event 3 are shown 

in Figures 4 and 5.  Cepstra for each station were generated for a series of sampling window lengths 
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between 0.0 sec and 8.0 sec in increasing increments of 0.05 sec.  Resulting cepstrograms and frequency 

wavenumber plots are shown in Figures 5a and b, respectively.  Notice there are numerous features in 

each cepstrogram.  The before mentioned stability parameter screened out the transients and passed only 

stable features to the depth computation module.  The final depth estimate is shown in Figure 5c and is 

approximately 3 km. 

 

 (a) (b) 

Figure 4. (a) Event #3:  2003 Bhuj aftershock location, focal mechanism, and network configuration.  

(b) Seismograms observed by each station and separated as a function of distance. 
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Figure 5. (a) Cepstrograms for BURAR, BRTR, FINES, and KSRS, where the top and bottom panels 

for each station represent pre-signal noise and observed seismogram cepstra, respectively.  

The floor of each cepstrogram is set to the site-specific gamnitude threshold, where each 

visible feature is a threshold crossing cepstra.  Delay times between 0 and 8 seconds were 

considered in our analysis; however, only the 0- to 2-second delay time range is shown for the 

purpose of clarity.  (b) Frequency wavenumber plots.  (c) Network-based depth estimate 

corresponds to the largest peak, which is approximately 3 km. 
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Table 1 shows a comparison of depth estimates for the analyzed events.  Values listed in the “Array-

Based” column were produced by our routine, free-depth solutions were created using a location 

algorithm based on [Jordan and Sverdrup, 1981], and published solutions were obtained from several 

organizations, which are referenced in Table 1.  Our results are in good agreement with the published and 

free-depth solutions and correspond particularly well to the modeled results. 

Table 1:  Comparison of Results 

Event Origin Time (GMT) Latitude (°) Longitude (°) mb 

 Depth (km) 

Published 
Array- 

Based 
Modeled 

Free-

Depth 

1
*
 05/06/2002, 08:12:14 38.4° 141.2° 5.1 40 35 35 45 

2
**

 03/12/2005, 07:36:10 39.2° 40.8° 5.4 16 5 10 13 

3
**

 08/05/2003, 08:04:05 23.7° 70.4° 5.1 15 3 2
++

 16 

4
**

 01/14/2004, 16:58:48 27.5° 52.17° 5.4 12 2 6 10 

5
+
 05/01/2006, 00:39:26 42.4° 69.2° 4.6 15 21 18 17 

*
Japanese Metrological Agency 

**
Harvard CMT 

+ KNDC Solution 

++ Modeled using Reflectivity Method 

 

4.0 Summary 

Our automated, array-based depth estimation routine produced results that are in good agreement with 

those created by conventional methods.  The false alarm reduction processes increased the reliability of 

the algorithm by selecting cepstra that were greater than or equal to the 99
th
 percentile of the pre-signal 

noise gamnitude distribution and exist across multiple sites.  Our adaptive detection threshold was derived 

from the current noise conditions at each site, which prevented daily noise fluctuations from producing 

false alarms.  Applying the stability parameter resulted in the selection of highly robust features in the 

cepstrogram and screened transient noise features that would have produces false depth estimates.  

Moreover, the network consistency check reduced the possibility of anomalous cepstral peaks producing 

false alarms by requiring a result to exist across multiple sites. 
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The combination of cepstral processing and frequency wavenumber analysis resulted in a fast and 

simple technique that can be executed in near real-time.  Unlike moment tensor inversion or waveform 

modeling, our routine requires neither detailed geophysical models nor is restricted to large events.  

Analysis of a small group of events showed its ability to estimate the depth of extremely shallow events 

and its potential as a real-time discrimination tool for cases where depth phases are not perceptible.  

Future work will focus on applying this technique to larger data sets and the routine analysis real-time 

data. 
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